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Synopsis.
A method analogous to that developed in the new theory of superconductivity is 

applied to nuclei in order to investigate the influence of the coherent pairing inter
action on various nuclear properties, especially on collective motion. The finite size 
effects, in particular the shell structure of the single-particle levels, are considered. 
The pairing correlation between two nucleons in states of opposite angular mo
mentum projections is taken into account by means of a canonical transforma
tion from the original interacting nucleons to new independent quasi-particles.

For strongly deformed nuclei, the moment of inertia is rather sensitive to 
the effect of pairing correlations and is found to be reduced from the value for 
rigid rotation by a factor of the order of that observed. For nuclei in regions near 
closed shells, the pairing correlations give rise to a spherical equilibrium shape 
and low energy vibrational modes of excitations. The vibrational frequencies and 
inertial parameters obtained from the present model are in qualitative agreement 
with experimental data and fit the observed trends.
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Introduction

The Fermi gas model, which neglects the interaction between nucleons, 
is the simplest microscopic model of the nucleus. The development of 
nuclear models has progressed by taking into account certain parts of the 
nucleon-nucleon interaction. The great successes of the shell model, in 
which the nucleons are assumed to move independently in a certain average 
potential, showed that evidently the main part of interaction can be treated 
as a spherically symmetrical, self-consistent field. In the unified nuclear 
model, developed by A. Bohr, B. Mottelson,1’ 2’ and others3’, it is assumed 
that, from the remaining part of the nucleon-nucleon interaction, an addi
tional self-consistent part may be extracted, which is non-spherical and 
time-dependent. This procedure makes it possible to explain many of the 
regularities in the low-lying nuclear levels in the language of collective 
excitations.

However, the real interaction between nucleons cannot be reduced 
simply to a self-consistent field. After separation of the self-consistent part, 
there remains some interaction between the particles. This residual inter
action is rather weak, but it may play an important role in various nuclear 
properties4,5’.

Recent work in the theory of superconductivity6-8’ has shown that even 
small interactions between Fermi particles may give rise to a basic change 
in the properties of the system, provided this interaction has a correlated 
coherent character. In a superconductor, the correlations between electrons 
arise from the interaction with the lattice vibrations and make possible 
quasi-bound states of electron pairs with equal and opposite momenta 
near the Fermi surface9’. This leads to a modification of the Fermi sea and 
to the appearance of a gap in the originally continuous energy spectrum 
of the system.

After the appearance of the new theory of superconductivity the sug
gestion was made10’ that the energy gap found in the spectra of even-even 
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nuclei is caused by correlation effects of a similar type to those considered 
for the electron system in superconductors. Such correlations may also 
affect other nuclear properties, which have no analogue in superconductors, 
connected with the finite size of nuclei and the shell structure of the single 
particle levels. It is the aim of the present paper to investigate the effect 
of the pairing correlation on various nuclear phenomena, in particular, 
on collective nuclear excitations.

We extend the method of the new theory of superconductivity developed 
by N. Bogolyubov7) in order to apply it to the nuclear system. The physical 
basis of the analogy is the similarity between the pairing energy of two 
nucleons with opposite projections of angular momentum and quasi
bound states of electron pairs with equal and opposite momenta. The corre
lation effect between nucleons is taken into account by means of a canonical 
transformation from the original interacting nucleons to new independent 
quasi-particles — the elementary excitations. The ground state of the system 
in terms of the new quasi-particles is the “vacuum” state. The essential 
part of the pairing correlation enters into the “vacuum” energy and into 
the intrinsic structure of the quasi-particles. Therefore, even if the residual 
interaction between the quasi-particles is neglected, one may investigate 
the influence of the correlation interaction on various nuclear properties. 
The general idea of the treatment is to take into account the coherent 
part of the residual internucleon interaction, but, at the same time, to retain 
the simple description afforded by the independent-particle model (with 
a type of quasi-particles).

In the first part, we consider the general formulation of the problem 
and select the canonical transformation required to take into account the 
effects of correlation between nucleons.

An explicit solution of the equation for the transformation coefficients 
is given in the second part. Here are also given, in the approximation of 
independent quasi-particles, the energy and the wave function of the ground 
state of the system and of the single-particle excited states.

The problems concerning the nuclear equilibrium shape and collective 
excitations are considered in the third part. Here, the moment of inertia 
for nuclear rotations and the inertial parameter and restoring force for 
the quadrupole vibrations of spherical nuclei are found within the frame
work of the cranking model.



I. Canonical Transformation

1. Hamiltonian

We consider a system of nucleons which are moving in a certain axially 
symmetric self-consistent well. (For simplicity, we do not distinguish between 
neutrons and protons). As basic functions of the second quantization repre
sentation we choose the wave functions of a nucleon in this well. States, 
which differ only in the sign of the projections of angular momentum along 
the symmetry axis, are degenerate. We call such states “conjugate” states 
and mark them with the index /ccr = (/c+; £-)*.

The wave functions of the conjugate states are assumed to transform 
into each other by complex conjugation and exchange of the spinor com
ponents**.

Let us introduce the Fermi operators ako‘> ak(J which create and destroy 
a particle in the state ko. The Hamiltonian for the system of interacting
particles is then

H' = Xek {aJ¡c + ak+ + a^alc_) 
k

¿ (k, a)
(1)

where ek is the single-particle energy in the A’-th state. (The sign of G is 
chosen to be positive for an attractive interaction).

The Hamiltonian (1) describes a system with a fixed number of particles 
N. Therefore, in a perturbation treatment in which H' is split into two parts, 
each of these parts must commute with N. The problem is essentially 
simplified if we make a transition from the system with fixed N (‘W-system”)

. The transformation y>+~> xp_ is equivalent to the time
reversal T.

* In fact, even symmetry of reflection in a plane is enough for the definition of the conju
gate states. We speak of axial symmetry only for definiteness.

'-y*/  
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to one with a fixed value of the chemical potential Â (“2-system”), which 
is described by the Hamiltonian

H=H'-IN. (2)

The choice of Â determines only the average value of N in the Â-system. 
Therefore, the solution which corresponds to the Hamiltonian, (2), will 
describe only average properties of nuclei and does not pretend to describe 
the individual nuclear properties for which one needs a fixed value of N. 
As will be shown later, the uncertainty in the value of N is small. In 
practice, the averaging is done only over a few neighbouring nuclei, either 
all even or all odd.

2. Canonical Transformation

Following the analogy with the model of a superconductor, we choose 
a canonical transformation of the form given by N. Bogolyubov71. In our 
case, however, it is necessary to consider a transformation of a more general 
type, because the interparticle interaction in (1) in general contains not 
only pairing interactions, but a certain supplementary self-consistent field. 
Therefore, we perform the following preliminary transformation to remove 
the self-consistent field:

bv+ = Z (Pkvak+> bv- = Vkv^-, (3)
k k

where the coefficients satisfy the conditions
(PkvWkv’ = bvv'’ WkvtPk'v ~ bkk’’ (^)

k V

The conjugate relationship defined above is preserved by this transforma
tion. Inverting (3), we obtain

ak+ ~ (Pkvbv + » ak- = Wkv bv—• (3)
V V

After the transformation to the new operators the Hamiltonian (2) 
takes the form

•W = Çbp _|_ bp' + bp'_ bp_y

1 -, VV' (6)
V2(J2\G\V2°2 bV,a, bvia't bv[a{>

¿va

where
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evv- = £ek<Pkv<Pkv'’ <7>

k

and the interaction matrix element is taken between the new states.
The self-consistent field is caused by the correlation between a great 

number of states. The character of the transformation (3) has this physical 
interpretation. After separation of the self-consistent field, each state is 
assumed to be correlated only with its conjugate state. The interaction 
mixes the states of the conjugate pair. In order to take into account this 
effect we introduce, instead of bvo, the new Fermi operators

av = |
, I (ö>ßv = Uv bp  + Vv bv + , J

where Uv and Vv are real numbers which obey the condition

Í72+V2=l. (9)

The special choice of Uv= 1; Vv = 0 for the states above the Fermi 
surface (ev> Â), and Z7v = 0; Vv = 1 for ev<Å, leads to the well-known trans
formation from particles and holes to elementary excitations. The com
pletely occupied Fermi sea goes to the “vacuum”. In general, the new 
particles (a; /?) are a superposition of a particle and a hole, and the 
“vacuum” corresponds to a modification of the Fermi sea.

The transformation inverse to (8) has the form

bp j. — Up <Xp + Vp ßp, 
bp_ — Up ßp VptXp.

Inserting (10) into (6), we obtain a Hamiltonian with the following 
structure :

H= i7+H20 + H11 + Hlnt. (11)

Here, U is a constant term

= G| viv> 2 V2-JT<vv| G| (12)
V \ ¿Vi / VVi

The terms H20 and Hn are quadratic in the new operators

- 21 < »»' I GI r, r, > ft, ft ( U„ Uv. - Vv Vv.) 1 (ft ft + ft «,.),
Vi f

(10)

(13)
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Hu = EI i- * V-X < 1 GI ri V > Uv> - Vv V„,)
vv' ( \ v' /
+ ^ < »' IG | > C,. V,, (UrV,.+ V,Up.)\(4a,. + ft. ft).

Vi J

(H)

The matrix elements in (12)—(14) have the form

The last term in (11), //lnt, contains products of four operators and 
describes the interaction between the new particles (a; /5).
It may be written in the form

Hjnt = H40 + W31 +//22, (16)

where the subscripts indicate the relative numbers of creation and destruc
tion operators in the corresponding term, e. g., the term W40 describes the 
creation of four particles from the vacuum (or the inverse process) and 
so on. (The explicit expression of //int is given in Appendix A). In the fol
lowing, we consider mainly the independent quasi-particle model, neglecting 
the interaction term Hint. Effects of this term will be briefly discussed at 
the end of Part II.

3. Choice of the Transformation Coefficients

Neglecting the interaction between the new particles, let us consider 
the Hamiltonian

Ho= U+H20 + Hn. (17)

Following the programme outlined in the Introduction, we choose the 
coefficients of the canonical transformations so as to make Ho correspond 
to an independent-particle system. This is possible only if H20 = 0 and Hn 
is a function only of the occupation numbers of the new particles <x¿ <xv and 
fiv From (13) it follows that the first condition leads to the equation

♦ The condition 1120 = 0 may be easily shown to be exactly equivalent to the requirement 
of a minimum “vacuum” energy U. Therefore, the ground state of the system in terms of the 
new particles is a “vacuum” state. The excited states are characterized by definite numbers of 
new particles, elementary excitations.
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The solution of (18) for v is equivalent to the diagonalization of 
the matrix hvv-. It can be carried out by arbitrary Uv, Vv only with an 
appropriate choice of the coefficients in the transformation (3), i. e., the 
states V. The quantities Uv, Vv might then be determined from the diagonal 
part of (18). In the general case, the choice of the states v depends on 
Uv, Vv, and the two transformations are not independent of each other. 
The quantity hvv> in (18) is a linear combination of two non-diagonal 
iTi ‘i tri

(is)
Vi

Vi

(20)

From (19) it is seen that is the energy of a particle in a self-consi
stent field*.  The diagonalization of £w< corresponds to the transition to the 
single-particle eigenstates in this new field. Generally, it does not lead to 
the diagonalization of Avv> (and, therefore, hvv-). But, in many cases of 
practical interest, the diagonalization of the single-particle energy £PJ,< 
gives rise to the following selection rule for the interaction matrix element:

* If the Fermi sea is not modified, the sum in (19) spreads only over the occupied states 
for which V^= 1. In the general case, V* describes the average distribution of the particle 
among the states.

♦* In the general case, one more transformation of the type (3) is needed for the diagonal
ization of Hn. It corresponds to the separation of a self-consistent field of the new quasi-par- 
ticles a and ß.

< vv' I G I iq v1 y = 0 for (21)

(In the //-shell model, and Eq. (21) is a consequence of the conserva
tion of the angular momentum). This makes both £w< and Avv. simultane
ously diagonal. There remain then in the sum in (14) only the terms with 
v' = v, and H1± takes the form of a Hamiltonian for independent particles. 
For simplicity, we restrict ourselves to this case**.

Assuming the diagonalization of ëVV' and to be fulfilled, we obtain 
from (12)—(14)

u - y «- a y J,i; + y - w' i g i > ' r / v? v;2,
V V vv'

(22)
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V

Hn-E{(ir-^(^-V^ + Ar2UvV,}(4^+^ß,'). (24)
V

where èv and Av are diagonal terms of (19) and (20),
The condition H20 = 0, which determines Uv and Vv, has now the form

(cv - Â) 2 Uv Vv - d„ (U2 - V2) = 0. (25)

4. Analysis of the Equation for Uv Vv

It is convenient to use an alternative form of equation (25). To obtain
this, we express Uv and Vv through Av from (25) and (9):

n2 V2 _
|/(S;-A)2 + Jf ’ |,%-A)2 + zi2

1 it. 1 V2 -1 j èv-À
2 |/(f~v-A)2 + J2] ’ v 2 |/(s\-a)2+d2]

(26)

Using (26) and (20), we find the following equation for Av:

V

| G |
— À)2 + Zl2-

(27)

To make clear the physical sense of the quantity ZfP, let us consider 
the energy of a quasi-particle Ev. From (24) and (26) follows

- |/a,-A)2 + d5. (28)

As is seen from (28), in the case of a continuous spectrum, the quantity 
Av is an energy gap in the spectrum of the quasi-particles. For a discrete 
spectrum ev, it is meaningful to speak of a gap only for values of which 
are greater than the distances between the levels ëv.

The equation (27) has a trivial solution:

Av = 0 or Uv Vv = 0, (29)

which corresponds to the sharp Fermi surface. If we choose in this case
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Uv= 1; Vv = Q for ev)Å, 
Uv = 0; Vv = 1 for e„<Å,

13

then the new quasi-particles <x, ß should correspond to the old particles 
outside the Fermi sea and to the old holes inside. If the interaction is suffici
ently weak, the trivial solution (30) remains the only solution of (27).

However, if the inequality

(31)

is fulfilled, then there is also a non-trivial solution of (27), which corresponds 
to the modification of the Fermi sea (the analogy of the superconducting 
state)*.

The equation (27) contains two matrix elements of the two-body poten
tial which play entirely different roles. The matrix element <vv'|G|v'v> 
is shown from (19) to contribute only to the self-consistent field. The matrix 
element < v v | G | v' v' > (“pairing interaction’’), on the contrary, determines 
a qualitatively new effect which corresponds to a modification of the Fermi 
sea. From (31) one can see that this modification is possible only if the 
pairing interaction for sufficiently many states has a coherent character,
e. g., for a sufficiently broad region of the states the matrix element 
(vv \ G \ v' v') must have the same sign, because otherwise there will occur 
a cancellation.

Lets us expand the two-body interaction potential in spherical harmonics

G (?1 -?2> = Z G' (n r2) P, (cos ¿>12). (32)
I

and ask the question: “Which part of the two-body interaction contributes 
to a self-consistent field and which part determines a coherent pairing 
interaction?’’

We believe that the following considerations may provide a qualitative 
understanding of this point. Assume that the spherically symmetric part 
of the interparticle interaction has determined a certain self-consistent 
isotropic field. The single-particle levels in this field are degenerate and 
characterized by the value of the angular momentum j (shell model). 
Let us consider the particles in the. same level j, neglecting their interaction

* Eq. (27) differs from the analogous equation in ref. 7 for a superconductor by the character 
of the spectrum ev. In the case of the superconductor, the continuous spectrum allows a non
trivial solution of (27) for any value of the interaction.
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with the particles in the other shells. The term with I = 2 (quadrupole) 
gives an essential contribution to a self-consistent field producing an ellips
oidal deformation which splits the single-particle levels20*.  But its contribu
tion to the pairing interaction is small, because it connects only the nearest 
levels ( I V- v' | < 2), which might not be enough to satisfy the inequality (31). 
The term in (32) with I = 4 connects the more distant lev els (I v-v'\ < 4), 
but its contribution to the self-consistent field is not so important, and so 
on. Therefore, the main contribution to the pairing interaction is from the 
high harmonics of the two-particle potential. The self-consistent field, on 
the other hand, is essentially determined by the low harmonics.

II. Ground State and Single-Particle Excitations

1. Solution of the Equation for Av

We assume that the condition (31) is fulfilled and that a non-trivial 
solution of the equation (27) exists. For an explicit solution of (27), assump
tions have to be made about the character of the single-particle spectrum ëv. 
For strongly deformed nuclei, where the shell structure almost completely 
vanishes, the distribution of the single-particle levels is approximately 
uniform in each interval, and the average level density is a smooth function 
of the energy. The sum in (27) spreads practically only over an effective 
region of the coherent interaction where the matrix element v |G | vf v') 
differs appreciably from zero. The single-particle levels of spherical and 
not strongly deformed nuclei exhibit a shell structure*,  i. e., are divided 
into sharply separated groups11*.  The most essential contribution to the sum 
(27) is given, in this case, by transitions between the states in the same shell. 
Neglecting the transitions between different shells (which will be discussed 
later), we can treat each shell independently. Therefore, in both cases, 
we have to consider a separated group of levels with approximately uniform 
distribution. For strongly deformed nuclei, this level group, determined 
by the effective region of interaction, may be assumed to be symmetrical 
with respect to the Fermi surface. In the second case, the level group coin
cides with the shell and may, in particular, reduce to one highly degenerate 
level. The position of the Fermi energy, in this case, is not fixed and depends 
on the number of particles in the shell. (A symmetrical position corresponds

We do not necessarily here mean /-shells. 
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approximately to a half-filled shell). We shall consider this general case, 
keeping in mind that the case of strongly deformed nuclei is equivalent 
simply to a half-filled shell.

To simplify the problem, we assume that the matrix element (vv | G|vV> 
is constant for the transitions between any levels inside the shell. With 
this assumption, the equation (27) for zl (which is now constant) takes 
the form

V

1
(33)

For zl larger than the distance between levels, which is the case we are 
interested in, the sum in (33) can be replaced by an integral. Then, we get

where

(34)

(35)

and s', s" determine the boundaries of the shell.
Defining a certain average level density q, according to

(36)

and introducing the dimensionless quantity

»? = G?G)
we obtain from (34)

sinh-1 — - sinh-1 7 = 2«Zl zl
and, therefore,

zl = . 1 .— [b2-t a2 - 2 ab cosh 2ri] *•  
sinh 2 77

2. Influence of the neighbouring shells

Up to now, we have not taken into account the matrix elements 
(vv\G\v'v') between different shells. Here, we consider briefly their effect. 
By separating out those terms of the sum (27), for which v' is in the shell

(37)

(38)

(39)
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nearest to the Fermi surface (2-shell), we can rewrite the equation (27) 
in the following form:

| G|

|/(i,,.-A)2+Zl2.
v'

i g i v'v'y a 

|/(v-Â)2+J2.
(40)

Treating the last term as a perturbation, we may in this term replace Av, by 
zlr, determined from the main part of (40). Further, in the denominator 
of this term, can be neglected, since the distance between shells is greater 
than the gap*.  The equation (55) may then be expressed as

V
/(e>-A)2 + zl^ < vv i G I v’v'y

(41)

Eq. (41) has the same form as the corresponding equation in which inter
shell transitions are neglected, but with a new value of the interaction. 
Therefore, the influence of other shells only increases the effective inter
particle interaction.

The efficiency of the pairing interaction depends on the region of inter
action, i.e., on the number of states connected by the transitions | G | v'v'y, 
and on the value of the matrix element. Inclusion of intershell transitions 
means, in fact, some extension of the interaction region, but, as it has been 
shown just now, it can be described as an effective increase in the value 
of the matrix element. It is of interest to see how this solution for d, in the 
case when the shell structure disappears, goes into solution with the un
renormalized matrix element, but with an extended region of interaction. 
For simplicity, we consider the case of a uniform level density inside the 
shells and assume a constant matrix element for all transitions in an energy 
region (-co, co) measured from the Fermi surface Å. Then, we have for the 
last term in (40)

1 \ Gode
2 U-co ÿe2 + A2’

where ó is the distance between the shells. Neglecting the quantity A in the 
square root, and performing the integration, we obtain for the equation (40)

* This is, in fact, the condition for the existence of a shell structure in our treatment.
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sinh -7 - sinh -7 = ¿n- In 77---- 7—77-------? = 2 r¡ ff.A A 1 (b + ô)(ô-a) ett

In the limiting case of %ff»l, one linds for A

A-2\Tab e~^ = 2 <o |/(fc + e'"

which, for 0->0, goes into the usual solution for a system with uniform 
level density (Fermi gas).

The matrix element (vv\G\v'v')> decreases with the atomic number as 
A-1. On the other hand, in heavy nuclei, the distance between the shells 
decreases and intershell transitions become more essential. Therefore, the 
effective interaction parameter G decreases somewhat more slowly than A-1.

3. Elimination of the Chemical Potential

The operator for the total number of particles in the system has the form

#~Z »»<r “Z 2 V,2 +Z (^ - ' r) « + ff ßr)ko V V
+Z^UvVv(cc+ ß+ + ßvav).

V

(42)

The average number of particles in the ground state (“vacuum”) is 
determined by the constant term in (42). Comparing it with a given value N, 
we find the following equation which determines Â:

êv - À \ i
|/(è„-A)2 + d2/ A (43)

or, replacing the sum by an integral,

Q (e) de = N. (44)

We shall approximate the level density @(e) by a straight line, taking 
into account only the first derivative q' (f). Introducing two parameters

1 r /Ls z M e(b)-Q(a)ea = 7¿[e(b) + e(a)]; l-e(b)+s(a). (45)
2
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we have in this approximation

e(e) = Co (46)

The average density <?0 is connected with the total number of pairing 
states in the shell ß by the condition

Co(£"~e') = (47)

Performing the integration in (44) and inserting for A the expression (39),
we get

b + a , 2r¡ \ ,
1 - ß - ~a tanh ” - 2 9 -¡ÎKhïï?)COth ”

(K)'( 1 277 \ 
sinh 2 / tanh r¡ = 0.

(48)

It is convenient to introduce the quantity %N according to

b + a = (b - a) %N coth = (e" — e') %N coth ??. (49)

Inserting (49) into (48), one finds the following equation for %N:

where

From (50) follows

Zv-Hy (v)Xn = 1 (r/), (50)

(51)

(52)

From (45) and (51), one can see that | £ | < 1 and 0 < y < 1. Thus, from 
(52) it follows that | yN | < 1. The limiting values ±1 are reached on the 
boundaries of the shell (2V = 0 and N=2Q):

1 for N = 0,
0 for N = (1 -|ê/)>

- 1 for N=2Q.

Xn ~ (53)
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Thus, the quantity %N characterizes the occupation of the shell and
may be called “occupation factor”. For the uniform level density (£ = 0),

o 1
7.N %N ~ 1 Q ’ (54)

The chemical potential 2 may be expressed from (49) and (35) as

2 = L^-^(e"-e')z2Vcoth7?. (55)

The average density q introduced in (36) (and therefore ?/) in general 
depends on N. Inserting (46) into (36) and performing the integration, 
we find

C — Co (56)

With the aid of (55) or (49) Å can be eliminated from all final results.

4. Criterion for the Existence of a Gap

Eliminating 2 from (39) we get for A*

A = e"— f'
2 sinh?/ (57)

This result has been obtained with the assumption that A is not smaller 
than the distance between levels. This condition may be written as > 1 
or, with the aid of (57) and (47), as

2 sinh?/ (58)

This inequality gives the condition for a modification of the Fermi sea 
and for the existence of an energy gap for the nucleus. To estimate the left 
side of (58), we may use the expression (54) for and obtain

(59)

* We avoid calling A an “energy gap”. It will be seen later, that in the case »/ < 1, the 
energy gap is determined by another quantity.

♦*  Far from the boundaries of the shell, where 1, (57) coincides with the solution in 
references 6, 7 for a superconductor if (e” - s') is identified with the region of the coherent 
interaction (see also pages 14-15).

2*
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In the case of i?»l, (59) is satisfied only by a sufficiently broad region 
of coherent interaction, i. e., for sufficiently large values of N (2Í2 - N). 
On the other hand, if r; 1, this condition is always fulfilled.

5. Energy of the Ground State

The energy of the ground state (of the “vacuum”) is the quantity U given 
by (22). The last term in (22) is connected with the energy of the selfcon
sistent field. We shall come to this term later and consider here only the 
two first terms in (22), i. e.,

i/'-2’(è„-A)2vr2-2’jp(7ri;. (60)
V V

The sum over closed shells, for which dj, = O; Vv=l, gives

- '¿X' (Í, ->■)- ÏX' - * ‘\l ■
V V

(61)

Using the constancy of Av and replacing the sum by an integral, we 
get for the unfilled 2-shell

After the integration and subsequent elimination of Å with the help of
(49), we find

cothi; - ^(2 + Zjv) (62)

The quantity U corresponds to the ground state of the auxiliary Hamil
tonian (2) with the chemical potential. The energy which corresponds to 
the original Hamiltonian according to (62) and (55) is given by

- j(e"-£')
(63)

The last term in (63) contains the factor (1-/^) and disappears for 
the closed shell, which has, thus, the energy

(64)
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It is known that the energy of the closed shell in the first approximation 
does not change for a small variation öß of the equilibrium deformation.
Therefore, the quantity

is at least quadratic in öß*.
In the absence of the interaction (^-> 00 ; y~> 1), it follows from (63) that

w A - Ï («"- e') (! - ¿) [1 - Hz« - i f2] • (65)

In the opposite limiting case 7/< 1, one finds

e"—e'<^QGr] 1 - + Øy//2
û y

(66)

where %°N is given by (54), and

(67)

Inserting (66) in (63) and restricting ourselves to t/2-terms, we find

(68)

For small deformations ß of a spherical nucleus, r) ™ (e" - e')I& G ~ ß. 
The expression (65) is thus a linear function of ß. On the other hand, (68) 
is proportional to ß2. Therefore, the pairing interaction changes the depend
ence of the energy of the outside nucleons on deformation. This turns out 
to be very important for the problem of the nuclear equilibrium shape. 
(See Part III).

6. Energy Spectrum of Quasi-Particles

The ground state of the system expressed in terms of the quasi-particles 
a ß is a vacuum. Acting on the vacuum wave function by the operators 
a+ and ß+, we get excited states with one or more quasi-particles. Such 
states we shall denote as single-particle excited states. The energy of these

* For a correct approximation the quantity £ must be chosen to satisfy this condition. 



22 Nr. 11

states measured relative to the ground state is given by the sum of the 
quasi-particle energies Ev.

From (28), (55), and (57) we find for Ev

E2 = (£v-Â)2 + d2
= |(e''-£')2(i-z^)(coth2??-1) + ~ £ 4“ £ lx,, ,

Sp----- + 2^e _£)^coth^
(69)

In the absence of a pairing interaction, Ev coincides with the particle 
energy measured relative to the Fermi surface:

Ej - 11„ - A0 I = ± ft, - Ao) - ± { lr-i (e"+ e') +1 ft'- e') Xn }. (70) 

where %N = %N ()/ = oc). With the aid of (70), the expression (69) takes the
form

(71)

In the limit of ?y»l (weak interaction or small level density), we get

Ep * «')*(!-&)«- ” + £? - |/zl2 + E’2 • (72)

In this case, the value of the energy gap is given by the quantity d. Because 
of the factor (1-/^) the gap disappears, in this case, at closed shells.

In the opposite limiting case of tj< 1, it follows from (71) that

Ev = |/{ Q2 G2 ± Xn^GEÎ + E^2. (73)

In (73) the role of the gap is played by the quantity 1/2 &G. It does not 
depend on the number of particles in the shell and does not coincide with 
A which, for < 1, is equal to

(74)

For the first excited states, E° is of the order of the distance between 
single-particle levels (in the absence of degeneracy E°~p-1). Therefore, the 
terms in (73) containing E° are small. These terms determine the level 
density of the quasi-particles above the gap. For small E°, we have from (73)

(75)



Nr. 11 23

(The term, quadratic in E®, may be important only in the middle of the 
shell, where & 0). Comparing the level density q for the quasi-particles 
with that for the original non-interacting particles q°, one finds

(76)

Near the closed shell, where | | ~ 1, the ratio (76) is of the order of
unity. As one moves away from closed shells, the level density of quasi- 
particles increases and in the middle of the shell becomes of the order 
of £?o°.

7. Wave Functions of the Ground- and Excited States

We consider now the question of the meaning of the wave functions 
of the ground- and excited states in terms of the old particles. Let us introduce 
the wave function of the vacuum state of the old particles for which 

= 6- The first transformation (3), which removes the self-consistent 
field, does not mix up creation and destruction operators and, therefore, 
does not change the vacuum state. After introduction of the operators av 
and ßv, the new vacuum state ’Eq is defined by the equations

I
Í

( 7 7 )

It is easy to prove that these equations are satisfied by the function

= H(Uv+Vvbß+ b+_~)^0 = 0. (78)
V

In this representation, the wave functions of the excited states with only 
one quasi-particle have the form

a+ =/7 (Uv, + ô + + Z>¿_) Z)++ ÿ/W,
v (79)

ßt uv> + vv, b$ + b +._) bvt ,

and the function corresponding to the excitation of the pair is

a+ ß+ % = 77 ( ¿V + Vv' b} + bt_) ( Uv bf+ b}_ - Vv) W<0) *.  (80)

The expressions (78)—(80) are similar to those obtained in reference 6 for a superconductor.
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As it follows from (78), describes a superposition of states with 
different numbers of particles. This is true also for the functions (79) and 
(80). It must be pointed out that (78) and (80) are formed only by states 
with even numbers of particles. The functions (79), on the contrary, de
scribe only superpositions of states with odd N. Therefore, these functions 
belong to different physical systems.

The “vacuum” function describes the ground state only of the even-N 
system (even-even nuclei). Excited states in such systems contain an even 
number of quasi-particles a+ or ß+ and are separated from the ground 
state by twice the energy gap.

For the odd-N systems, the ground state is given by the lowest of the 
states (79), i. e., the state with one quasi-particle, say a*  Wq. The excita
tions of this odd quasi-particle, which are obtained by acting with the 
operators cx.ß ocVo or ß„ av<¡, have no energy gap.

Therefore, the excitation spectra in even-even and odd nuclei turn out 
to be completely different. On the other hand, the properties connected with 
the energy of the ground state exhibit no essential differences, since the 
energy of the odd particle may be neglected with comparison to the “va
cuum” energy.

8. Uncertainty in the Number of Particles

To estimate the uncertainty in the number of particles in the states 
(78)—(80), one can consider the average quadratic fluctuation of N, say, 
in the “vacuum” state Wo. Using for N the expression (42), one easily finds

<A'2>-<7V>2 (81)

For simplicity, we restrict ourselves to the case of a uniform level density 
(£ = 0). Replacing the sum in (81) by an integral, we find, after some 
elementary calculations,

<JV2> - < AT>2 = ®'n tan-1 (0‘(*  sinh77), (82)

where 0N is the occupation factor (67). In the limiting case of r¡ » 1, we get

__ £__  01/.
2 sinh 77 N

<A2>-<N>2^71 0?»!)- (83)
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This expression differs from the left side of the inequality (58) only 
by the factor n. Therefore, for this case, we can write

<N2>-<N>2 (r?»l). (84)

For strongly deformed nuclei for which this case is realized, the value 
pd is significantly smaller than N, the number of the particles in the un 
closed shell.

In the case of ??<1, (82) takes the form

<N2>-<JV>2^í?0jv-2nÍ1 (,<1). (85)

For N = 2 (one pair), ÔN, the average width of the distribution is 
approximately 2, i. e., there are admixed practically only the nearest even 
neighbours. In the middle of the shell (2V ~ £?) the width is of the order of [/w

One might suspect that the uncertainty of ;V, in spite of its smallness, is 
of principal importance, because it might permit solutions which are im
possible for fixed N. It must be pointed out that the removal of the condition 
N = const by the introduction of the chemical potential Å does not extend 
the scope of possible solutions. This method means only a replacement 
of the system under consideration (Ar-system by 2-system). There are no 
physical reasons to expect a significant change in the ground state and in 
the properties of quasi-particles caused by this replacement. We can see this 
in the limiting case 7] = 0 (complete degeneracy), where our results may be 
compared with the exact solution*.  The energy spectrum of the system with 
N particles is given in this case by12).

W»--lfiGv(l-^) + fiGm(l-^). (86)

The corresponding expression in our case (Â-system) follows from (68) 
and (73) by substituting rj = 0, E„ = 0, e, = 0 by

W¿--ifiGv(l-  ̂+ fiGm (87)

(the last term corresponds to in excited pairs). Comparing (86) and (87) 
it is seen that relative corrections both to the ground state and to excited 
states are of the order of Í21 **.

♦ The Hamiltonian is given by H = - G £b+ b+ b b r
VV' y— v'~ v'+

** The interaction, 7/¡nt, between quasi-particles gives corrections of the same order. There
fore, in the approximation of independent quasi-particles, the equations (87) and (86) do not 
differ from each other.
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9. Effect of the Residual Interaction between Quasi-Particles

The nature of the canonical transformations performed above might be 
explained in the following way. The interaction between the original partic
les contains a coherent pairing energy. This interaction, in principle, could 
be treated in a direct way by rejecting of the independent-particle 
model. We had another aim, namely to keep this model, but to take into 
account the pairing interaction, or at least its main part, by introducing 
a new type of independent particles. The pairing energy, which was an 
interparticle interaction, then determines the intrinsic structure of the 
quasi-particles.

With the aid of the canonical transformations, we can take into account 
the pairing interaction only in the form of the matrix elements v|G|v'v'). 
The question might quite naturally arise as to whether these matrix elements 
are the main part of the pairing interaction. Other matrix elements could 
possibly cause results which are basically different.

The residual interaction between the new quasi-particles is described 
by the Hamiltonian 7¥int(16). To answer the questions mentioned above 
one might treat //int as a perturbation. In our case, the perturbation treat
ment has a special feature, since the coefficients of the canonical trans
formation Uv, Vv have to be corrected in each order. In the second order 
in Wint, the structure of the equation (27) for Av does not change, but the 
matrix element is replaced by an expression of the form*

, , NT 7 < ’’’'i I G | v | G | v' vi )<»|CUV> ++£ UvyM.
V,Vi  F Fl

+ terms of similar form

In other words, the graphs of the perturbation theory correct the pairing 
interaction. One can expect that the sum of the graphs would lead to re
placing the matrix element | G | v'v') by a certain effective pairing inter
action, but not to a basic change of the results**.  In this sense, the influence 
of the residual interaction Hint on the properties of the ground state and 
the quasi-particles is not essential.

* See the analogous analysis for a superconductor in reference 13.
** The analogous procedure in the Brueckner-Bethe theory of nuclear matter 14> leads to 

a replacement of the interaction matrix elements by those of the transition matrix. A similar 
situation might be pointed out also in the theory of superfluidity in a Bose system. In reference 
15, a spectrum of quasi-particles has been obtained with the aid of a canonical tranformation. 
The sum of graphs of the perturbation theory, which has been performed in ref. 16, gave the 
same result but with replacement of the interaction matrix elements by exact scattering ampli
tudes.
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Besides that, the interaction between quasi-particles contains the low 
harmonics of the nucleon-nucleon interaction (32) which remains almost 
untouched by the canonical transformation. These harmonics, which give 
rise to collective excitations in nuclei, require other methods of considera
tion20). On the other hand, collective excitations in nuclei can be treated 
directly in the framework of the unified nuclear model by introducing a 
time-dependent deformed self-consistent field.

III. Collective Excitations in Nuclei

The nature of collective excitations in nuclei and the methods of their 
investigation are explained in detail in the literature (see, e. g., Chapter V 
of reference 3). We briefly sketch some essential points which will be 
needed later.

Let us introduce a parameter which describes a particular type of 
the collective motion. Using the adiabatic character of the collective motion 
one may first consider the intrinsic motion of the nucleus for a fixed value 
of The energy eigenvalues for this motion are denoted by Wf($). Then, 
the Hamiltonian of the collective motion is given approximately by

(88)

where the inertial parameter Z?¿($), obtained by the adiabatical 
bation theory, is given by17)

2 ft2

pertur

bo)

The potential energy of the collective motion Wt (#) and the inertial 
parameter B¿ (#) arc essentialy determined by the intrisic nucleon motion 
and their calculation is possible, in practice, only for simple models. It is 
known that the hydrodynamical model of irrotational How gives too small 
a value for B (&). The independent-particle model (using an oscillator 
potential) leads to a very large value of B (#) for rotations (rigid-body mo
ment of inertia) and to a very small B (#) for vibrations, which violates 
the adiabatic condition.

Below, the parameters of the collective motion will be found for the 
model of independent quasi-particles (which is equivalent to a model of 
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the old particles with the pairing interaction included). It is not our aim 
to make here a detailed investigation of the collective excitations or a com
parison of the results with experimental data. The main problem is to esta
blish what role the pairing interaction plays in collective nucleon motion 
and what qualitative results it leads to.

1. Dependence of the Nuclear Energy on the Deformation

Here, we restrict ourselves only to the axially symmetric quadrupole 
deformations. In the liquid drop model, the deformation is defined in a 
natural way as a deviation of the uniform drop from the spherical shape, 
and is uniquely connected with the nuclear quadrupole moment*.  In single
particle models where one considers the nucleons in a certain potential well, 
such a simple picture is valid only for nuclei with closed shells. In the 
presence of particles in an unfilled shell, the nucleus does not behave as a 
homogeneous system. The nuclear quadrupole moment is not determined 
only by the deformation of the well, but depends essentially on the confi
guration of the particles in the unfilled shell. The energy of the nucleus will 
also depend, in this case, on both factors. However, one must take into 
account the self-consistent nature of the nuclear potential. Self-consistency 
requires that the distribution of the potential must be the same as the den
sity distribution (which is the consequence of the short range nucleon-nuc
leon forces). Therefore, for a given value of the eccentricity of the well, 
only such configurations of the outside nucleons are allowed, which provide 
the same eccentricity of the density.

In Section II. 5, we have not used this self-concistency argument; there
fore the ground-state energy obtained there applies to the system in an 
external potential. In order to introduce the self-consistency, we now ask 
for the lowest state of the system with a fixed value of the quadrupole 
moment. Due to a relatively small coupling between the closed-shell core 
and the outside nucleons, we shall consider the deformations of these two 
components as distinct degrees of freedom and shall be looking for the 
nuclear energy as a function of two deformation parameters, say, the 
quadrupole moments both for the closed-shell core and the outside nucleons.

Let us assume, first, that the closed-shell core is spherical and undeform- 
able. In this case, we have to find the energy of the lowest state of the outside 
nucleons for a fixed value of their quadrupole moment (which, in this 
case, represents the total nuclear moment Q). To satisfy the subsidiary 
condition of a constancy of Q, we add to the Hamiltonian the term -//(),

* Here and below, we mean the quadrupole moment of the mass, but not that of the charge. 
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where Q is the quadrupole moment operator, and look for the ground 
state of the Hamiltonian

H-H-pQ. (90)

Then, the Lagrangian multiplier ft has to be eliminated by using the 
condition <0> = Q.

The quadrupole moment Q, represented by the sum of the single
particle operators, has the form

Q 2 Vv UV - Vv Vv') (ar aP' + ßv' ßv)
y w' I

+Z?«- ( C + V, u„.) («+ ß} + ß„a,.),
vv'

where qVV’ are the matrix elements of the single-particle quadrupole moment. 
We neglect, as always, the interaction between quasi-particles and consider 
instead of H the Hamiltonian Ho = U + H20 + Hn. Comparing (90) with 
(22)—(24) one can see that the inclusion of the term -/¿Q is simply equiva
lent to a renormalization of the single-particle energy eVV'-+ (evv- - /j qVV'). 
Assuming that the new single-particle energy has been diagonalized by 
an appropriate choice of the states v, we get the Hamiltonian of the form 
(22)—(24), where the levels êv are given by

I ö | v/v>V2(92) 
V’

In producing the deformation of nuclei, the quadrupole part of the 
interaction between particles (the term / = 2 in (32)) is of great importance. 
The main eiTcct of this quadrupole interaction can be described as an 
interaction of each particle with the total nuclear quadrupole moment. 
Therefore, we assume that

£<vv'\G\v'v)V*.  = xQqvv, (93)
V'

where x is a constant coefficient.*  **
* In the unified nuclear model, the analogous expression is considered as a coupling energy 

of a single particle to the nuclear surface. Comparing (93) with the equation (II. 26) of ref. 2 
(Wcoupi = -kßYi0), we obtain the following relation between x and the “coupling constant’’ k:

 5 k
IZAR*?*

(93)

where we have used the connection between ß and Q (see below, Eq. (105)) and the equation 

Q = 4

** The-single particle energy in a potential well is given by the same equations (92), (93).
provided the quantity Q means the quadrupole moment of the potential. Identification of (> 
with the particle quadropole moment leads to the self-consistency discussed above.

l/i y20r2. The equation (93') implies, in particular, that x is proportional to A
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Inserting (93) in (92) one finds for the single-particle-levels

£j, (/Z + X Q) Qpp — £p fl Qpp • (94)

The quantity ev, according to (7), is given by ev <p'kv <pkv, where e® 
*

is the energy of the degenerate single-particle levels in the spherical nucleus, 
and (pkv are the coefficients which transform the single-particle wave functi
ons in the spherical field to those in the deformed field. The splitting of ev 
by the deformation is caused only by the change of the single-particle wave 
functions and can be neglected for the outside nucleons for which the main 
splitting is caused by the last term in (94), associated with the direct 
quadrupole interaction. (Cf. an explicit solution in Appendix B).

The energy of the ground state of the auxiliary Hamiltonian (90) is 
given by the quantity Í/ in (22). The lowest state with a given value of the 
quadrupole moment Q of the original Hamiltonian has the energy

W(Q) = U+ÅN + fiQ. (95)

With the aid of (22), (43), and (95) we obtain

W(Q)-Z^2^-kQ2-^, (96)
P ¿ tr

where A is given by (57). The first term in (96) corresponds to the energy 
of non-interacting particles, while the last two terms represent the energy 
of the quadrupole and pairing interactions.

According to (91) and (94) the quadrupole moment of the outside nucleons 
is given by

Ql - X*  <!» 2 V,2 - 7 XÅ (*,  -V 2 V?.
P p

Neglecting the 

the 2-shell £; =

splitting of Ep, we may replace sv by the average energy of

2 /+ £/+ g (£,Z _ £ ) With the aid of (43) we find

(97)/t fl p

Replacing the sum in (97) by an integral we obtain, after calculations simi
lar to those performed in Part II,

where
(h = Ço^Crç).

q0 = max qvv- min qvv = q (£z) ~q(s") =

(98)

(99)
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is the amplitude of the single-particle quadrupole moment, and

A W = f (1 - Z.v) (i - Y (»?) - 2 %Xn (z ('/) cothr/ -1) (10°)

where the function y (yq) is given by (51). The equation (98) connects the 
quadrupole moment of the outside nucleons with the parameter r/. There
fore, the equation (96) gives the nuclear energy as a function of q in the 
case of a spherical undeformable closed-shell core.

Now, let us go to the general case and consider also deformations of 
the core. Here, we require fixed values of the quadrupole moments both 
for the outside nucleons and the closed-shell core, and introduce into the 
Hamiltonian two Lagrangian multipliers

H = W-Z/Qâ-/QcZ, (101)

where QC1 is the quadrupole moment of the closed shells. The equation 
(93) is valid also in this case, provided Q means the total quadrupole 
moment. The expressions (92) and (94) now correspond to the outside 
nucleons; for the closed shells, one needs simply to replace by /i'. After 
simple calculation, one finds that the energy of the lowest state with given 
values of and Qcl is given by the equation (96), where Q is now the total 
quadrupole moment (= Qc¡ + Q¿) and the sum in the first term is extended 
over the closed shells as well as the unfilled 2-shell.

The single-particle quadrupole moment qvv can be written, for small 
deformations of the self-consistent field, as

= + (102)

where is determined by wave functions in the spherical field, and qff is 
a correction caused by a dependence of the wave functions on the deformation. 
For the closed shells, \ 'q„v = 0, and therefore Qcl is determined only by

V 
the quantity q$ which is proportional to the deformation. On the other 
hand, the quantity q®v gives the main contribution to the quadrupole moment 
of the outside nucleons Qy. The contribution of the quantity q$ to the

— & value of turns out to be small, as -------, where ef is the Fermi energyep
(see Appendix B). Thus, we can use, for Q¡, the expression (98), where 
the dependence of the single-particle wave functions on the deformation 
was neglected.
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The first term in (96) corresponds to the energy of non-interacting 
particles, provided one considers their new distribution among the levels 
(V25z£0,1). The dependence of this term on the deformation of the field 
is caused only by a change in the single-particle wave functions. This leads 
to a quadratic dependence for small deformations. Choosing the value of 
the quadrupole moment of the closed-shell core as the deformation para
meter, one may write

2. Equilibrium Shape of the Nucleus

In the absence of pairing interaction (??-> °°) one finds from (57) and (100)

* The quantities Wo and k depend somewhat on the occupation of the unfilled shell. 
We shall neglect this weak dependence. In order to add to the understanding of the nature of 
these coefficients, as well as of the approximation made in the derivation of equation (104), 
a particular problem is solved explicitly in Appendix B.

V ¿
(103)

where Wo and k do not depend on the deformation*.  Inserting (103) in (96), 
one finds

IV (0) - +1 (Å- «)Q2 - Å-QQA +1 A-QP. (104)

Let us introduce the deformation ß which is associated with the total quad
rupole moment Q by the equation2*

Q = ~Atfoß=Qß,
|/ 5 7T

(105)

where A is the atomic number and 7?0 is the nuclear radius. Inserting (98) 
and (105) in (104), we obtain

w (0) - Wo+10 - X) Ô2JÎ2 - i<ZoQM (O +1 M212 - • <> °6)

The equation (106) determines the nuclear energy as a function of the de
formation ß and the parameter r/ associated with the configuration of the 
outside nucleons.

~ 0 and /!(//) j(l-/^) (107)
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where %N = %n(t] = °o). The energy W(Q) in this case depends on ß only. The 
equilibrium deformation ß0 always differs from zero, except in the case 
of the completely closed shell. Therefore, the spherical shape turns out to 
be unstable for any number of outside nucleons and the deformation 
increases smoothly when the occupation of the shell increases.

For a fixed value of r/, the equilibrium deformation ß0 determined 
from (106) is equal to

<108>
This equation can be written as

Qå = O.-x/k)Q, (108')

which indicates that the quantity x/k describes the polarizability of the core 
by the outside nucleons*.

In the case of equilibrium between ß and rj, W(Q) takes the form of

(109)

This equation is seen to be equivalent to (96), (98). The only effect of the 
deformable core (A- # <» ) is an effective increase in the quadrupole force 
(’co" = F^/î)’

For small one finds from (57) and (100)

(»)< O- (HO)

Combining (109) and (110) we get

where

£)2 i
W(Q)-Wo-yG^ + 2C»’l-

660^)0-Sa

illi)

(112)

♦ The quantity x/k can be estimated empirically from the values of the quadrupole moment 
for nuclei with one particle outside of closed shells (e. g., O17 or Bi209). These nuclei exhibit 
quadrupole moments of the order of single-particle values, which implies that x//c ~ 0.5.

Mat.Fys.Medd.Dan.Vld.Selsk. 31, no. 11. 3
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The stability of the spherical shape depends on the ratio of the two terms 
in the square brackets of (112). The first term, which is associated with 
the pairing interaction, tends to produce stability. The second term gives the 
effect of the quadrupole interaction between nucleons and, in the case of 
attraction (x)0), tends to produce instability of the spherical shape. In
troducing the quantity 0Nt> by the equation 

0Nu 6G(l->clk)\ 3/
(113)

we can rewrite (112) in the form

P2 / £2\C,--g G0w^l-^j(l-0w/0Ä,). (114)

The quantity 0N represents the value of the occupation of the unfdled shell 
required to make the spherical shape unstable. The value of 0No changes 
from shell to shell. If PjVo>1, then the nucleus remains spherical for any 
occupation of this shell.

When the condition 0Nti(0jV< 1 is fulfilled, the spherical nucleus is un
stable. The equilibrium deformation is determined in this case by the extre
mum of (109) for r¡ # 0. To simplify the calculations, we restrict ourselves 
to the case of uniform level density (£ = 0). Using (57), (100), and (113), 
one finds from (109)

M'(Q). + (115)

The extremum of (115) is determined by the equation

The solution corresponding to the first factor in (116) gives an extremum 
for r/0 = 0. Since 3y/2r/<l, the second solution of (116) occurs only for 
0Ny0No- Using this solution, one finds the equilibrium deformation ß0 from
(108):

a 0qo 0N , /, n X
ft'4(l-«Wø’’«' (117)

In the absence of pairing interaction, the equilibrium deformation is given by 
the same equation (117) without the factor y0. Therefore, this factor repre
sents a relative reduction of the equilibrium deformation arising from the
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Fig. 1. Relative reduction of the equilibrium deformation arising from the pairing inter
action.

The figure shows the ratio of the equilibrium deformation to that in the absence of pairing inter
action, in the region of deformed nuclei (0n<0no). The reduction factor y0 is obtained from 

the equation (116).

(118)

pairing interaction. The function yo(ONl0No'), determined from the equation 
(116), rises rapidly with increasing occupation 0N near 0No and quickly 
approaches its limiting value y0 = 1- (see Fig- !)• Near the point of instablity, 
one finds

and from (117) it follows that

o qoQØx,,
^°~6(l-x/À)0 (119)

3*
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Fig. 2. Dependence of the equilibrium deformation on the occupation of the unfilled shell. 
The equilibrium deformation ß0 is plotted as a function of the occupation factor for two 

different values of the quantity 0.vo given by (113).
The dashed line shows the deformation ßm in the absence of pairing interaction. The maximum 

value of /3i0) (for a half-filled shell, i.e., 0.v=l) is chosen as a unit.

Therefore, the transition front the spherical nucleus to the deformed one 
is rather sharp. The minimum value of the possible deformation may be 
estimated front (119) by setting N = No + 1 (i.e. (1 - ONJ0N') & Nq t):

^mIn ~ 3 (1 - x/À) 0 y 2 Ar°’

For large values of 0N/&ya, one finds front (116)

7o 1 - 2 (3 Øjv/^iVo — O exP (_ 3

(120)

(121)

and, therefore,

ßo * 6 (1- x/k) Q (1 ~ 2 (3 ^v/©v„~ 1 ) exp (-3 ■ (122)
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Fig. 3. Dependence of the nuclear energy on the configuration of the particles in the unfilled 
shell.

The figure shows the nuclear energy as a function of the quadrupole moment of outside nucleons 
for five different occupation factors. The energy is measured as the difference from that in a 

spherical nucleus, in units-£?2G0;v(total pairing energy in the spherical nucleus). The quadrupole
4 ' o

moment, Q., is plotted in units of its maximum value QAmax = 9oq &N- (The weak dependence 
of QÅ on the change in wave functions upon deformation has been neglected).

In this region (near the middle of the shell), the main dependence ß0 
of the occupation is given in (122) by the quantity 0N; thus, we may write 
approximately
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ßö^ßmax^N’ (^23)

where /?max is the value of the deformation for the maximum occupation 
of the shell (0N = 1):

----- q0Q-----  (124) 
Pmax 6(l-x//c)Q' 1 ;

Consequently, the values of the equilibrium deformation have a lower 
bound and change smoothly near the middle of the shell.

The equilibrium deformation ß0 as a function of the occupation factor 
0N is illustrated in Fig. 2, where the dashed line corresponds to the absence 
of pairing interaction.

It is of interest to point out the dependence of ßmln and ßmax on the 
atomic number A. Since the quantity x~A_7/3 (cf. footnote, p. 29) and 
G~A-1*),  q0~ ~ A2'3, it follows from (113) that 0No is independent of A 
(and, therefore, AT0~f2 ~ A2/3). From (105) we have also ()~A5/3. Using these 
facts, we obtain from (120) and (124)

* Here, we neglect effects of intershell transitions, which changes this dependence to some 
degree (cf. p. 17).

** For strongly deformed nuclei, the levels of different shells cross11). Redistribution of the 
particles might occur, however, only when the levels of the low shell cross the empty levels of 
the unfilled shell. The number of such crossings is rather small, and we may expect that they 
do not change qualitatively the results concerning the equilibrium deformation.

ftrnn-W2'3; (125)

which is in agreement with the observed trends**.
The dependence of the nuclear energy on the configuration of the out

side particles (for the equilibrium deformation of the core), which is given 
by the equation (115), is illustrated in Fig. 3. The value of the quadrupole 
moment of the outside nucleons is chosen as the variable. Due to the finite 
nature of the quadrupole moment Q¿, the curves have terminal points. 
This fact may violate the possibility for vibrations of outside nucleons 
in a deformed field.

3. Inertial Parameter

As is seen from (89), for the calculation of the inertial parameter B (û) 
it is necessary to know the dependence of the ground-state wave function on 
the collective parameter ft. To this end, we consider y0 in the representation 
of occupation numbers of the old particles (78)

= n ( Uv + Vv b++ bl) ^0(0). (126)
V
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The change of the parameter & means a certain variation of the self-consistent 
field; in the rotational case, it is equivalent to a certain rotation; in the case 
of quadrupole vibrations of a spherical nucleus, it is a quadrupole deform
ation, and so on. In the general case, we can associate with # a certain 
operator of the infinitesimal displacement K&. The associated variation of 
the self-consistent field changes the single-particle states and, therefore, the 
operators of the old particles b^a. Since the correspond to independent 
particles, the operator K& expressed in terms of b^a may be represented by 
a sum of single-particle operators

A*  = JT (b}+bv.+ ± b^_bv_~), (127)
w'

where kfv> = + | k& | v' + > is the matrix element of the single-particle operator.
The sign ± is due to the condition

</-|^|v-> = ±<v+|^|/ + >

and is defined by the behaviour of the operator k under time reversal.
In addition to the change in the wave functions of the original particles, 

the deformation causes a shift of the single-particle energy levels, which gives 
rise to a change in Uv and Vv. Therefore, the total effect of the deformation 
can be written in the following form:

(128)

where the last derivative is taken, keeping the operators bva constant. Per
forming in (127) the transition to the operators a, ß we get

kvv (1 ± >) V,2 («X-
V vv'

+ Z & (Uvvv,± Vv uv.) (a+ ± & a/).

The result of the operation of K& on the vacuum state is given by

(130)

Now, consider the last operator in (128). From (126) it follows that

IdVoX _ V7 í^í 4 M /,+ ’
\d# L \dd dfi

V
v'^v

(131)
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With the aid of the normalization condition U2 + V2 = 1, the first factor in
side the sum takes the form

d& d&
b+ [j+ _y\Vvd^^v°v+°v- Vv)- (132)

Thus, by comparing (131). with (80), we get

As it is seen from (130) and (133), causes transitions from the va

cuum only to states with two quasi-particles

0 > = -ik& .(U V -±V U A - —v / lJipv \UV r V ' V J y Qÿ (134)

There is no interference between two terms in (134) provided the diagonal 
matrix element kf,v is equal to zero. In this case, the inertial parameter for 
the vacuum state is given by

b^ = b1 + b2

l4,|2(UrVr.±K<7,.)2 ! pi’,j2 I
E, + E„. " À V; tHH E,’

V

(135)

where Ev is the energy of a quasi-particle (71). The expression (135) defines 
the inertial parameter for even-even nuclei. The ground state of odd nuclei 
is given by the function of the form (79), say, a^y0. Performing similar 
calculations with this function we get

A ——

vv'
V'*V9

This expression can be rewritten in the form

^odd — + Æ2 + B3,

(136)

(136')

where Br and B2 are given by (135) and correspond to even-even nuclei. 
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The term B3, which determines the difference in the inertial parameters 
for neighbouring even-even and odd-A nuclei, is then given by

«3 ■ 2 /r \ ,33 I ! (W - V2) (U2 - V2) ± 4 U, V, Vv. VJ Ev + E„ }

v^v„

EVt\VVo dû I •

(136")

The two terms in (135) have an essentially different nature. In terms of 
original particles a nuclear deformation, which corresponds to the collective 
parameter û, gives rise, in the first place, to single-particle transitions into 
the higher states and, secondly, to a change of the Fermi sea without particle 
excitations. By corresponds to the first effect. The pairing interaction does 
not change the structure of this term, but makes only quantitative alterations, 
which are connected with the new energy spectrum and the new distribution 
of the particles (Uv, V, # 0,1). The term B2 is connected with the change 
of the Fermi sea by the deformation. This qualitatively new effect is caused 
by the pairing interaction and disappears for non-interacting particles (when 
Uv, yv = const). In the case of rotations, the term B2 is equal to zero, since 
Uv, Vv do not depend on the nuclear orientation. For vibrations, on the other 
hand, the term B2 will be shown to make the main contribution in the 
inertial parameter. Therefore, the pairing interaction basically changes the 
character of the vibrational motion.

4. Rotational Moment of Inertia
In the case of rotations of axially symmetric nuclei about an axis per

pendicular to the nuclear symmetry axis, the mass parameter B gives the 
moment of inertia J. In this case, k is the operator of the particle angular 
momentum jx. Therefore, one finds from (135) for the moment of inertia 
of even-even nuclei

J - 2ft2^ (U,V,-- V,I',-)2- (137)

w'

Since jx changes sign under time reversal, the sign (-) has been chosen in 
(135).

In the absence of the pairing interaction, we have Uv, Vv = 1,0 and 
Ev = = \ev-à\, and (137) takes the form 

¿v' (138)
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which coincides with the ordinary value for the moment of inertia in an 
independent-particle model.

Inserting the expressions (26) for Uv, Vv in (137), we get for the case with 
a constant gap Zl :

/I2 + (ep — Â) (fj,' — Â)
Ep EV' (139)

In order to analyse this expression we split it into two parts. J = J' + J", 
where

J"
________ (ev - Ey')2________
EVEV.(EVEV, + E°VE°V, + A2y

(141)

./' contains only transitions connecting states below with those above the 
Fermi surface. Comparing (138) and (140) one can see that ./'< j(°) (an 
equality is achieved for non-interacting particles, when A = 0). A decrease 
of ./'with respect to J(0) occurs, in the first place, because of an increase of 
the energy denominator and, secondly, owing to the modification of the 
Fermi sea. (The probability of finding an occupied state below the Fermi 
surface and an empty state above has decreased). The term J" contains 
transitions only on one side of the Fermi surface and gives a relatively 
small contribution for strongly deformed nuclei.

To estimate the term ./' we rewrite (140) in the form

(142)

Assuming that (jx)vv> is a sharp function of v and v', we may take out of
the sum the smoothly changing factor in the square brackets, evaluating it 
for certain average values E® and E°,. Assuming that E^ = E°, we
obtain

(143)

where JrIg is the moment of inertia in the absence of the interaction (A -> 0) 
which coincides with the moment for rigid rotations. It is seen that the mo
ment of inertia is rather sensitive to the effect of the pairing correlations; 
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(ßv - £r')3

(E^+d2)’/’’

thus, for /I (0.7 - 0.8) E0, which approximately corresponds to the situa

tion in the most strongly deformed nuclei, one obtains J'/JTig

In order to estimate the term J", we assume that the matrix element 
jvv, connects the levels, separated by the same energy as in (143), namely, 
eV'— ev œ 2 E°. Then, introducing a certain average distance of such two 
levels from the Fermi surface,

E-p o £v + £v' _ 2

and using the approximate relations

ErEr< ~ E| = Ep02 + d2 
E, + ~ 2 Et = 2 |/E?2+J2 ’

we obtain from (141)
J” = fi2J2 lÊ’d!

£„ - £„,
Á < ev’< ev

Assuming, further, that the value of |JW'|2 does not strongly vary in the 
effective region of the sum, and taking into account that, in this case,

we find

(144)

For simplicity, we consider an oscillator-like level scheme, where 

E® = 2E°r (v=l,2...). For strongly deformed nuclei, when 0< 1, the 

terms in the sum (144) decrease very rapidly, and we may restrict ourselves 
only to the first term. Then, we obtain 

which is very small compared to the ratio (143). When we go to less de

formed nuclei, the ratio increases and more transitions make a sig

nificant contribution to the moment of inertia. In the case of —; » 1» all2 E
transitions inside the energy region A are almost equivalent, but only one of 
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them is included in J' (viz. that which crosses the Fermi surface). There
fore, we can expect that, in this case, the /"-term becomes larger than J' 

by the factor ~ (which represents the number of effective transitions). 

For — 0 > 1, we can replace the sum in (144) by an integral. Then, we

obtain 2/E°\2
3 \ Zl / :

which confirms our expectation.

5. Inertial Parameter for Quadrupole Vibrations of Spherical Nuclei

As has been shown above, deviations of nuclei from the spherical equi
librium shape can be characterized by two parameters: the quadrupole 
moment of the closed-shell core Qcl and that of the outside nucleons 
(or by the parameter rj proportional to Q¿). The deformation associated 
with Qcl changes only single-particle states, so that it contributes only to the 
term Br in (135). In the harmonic oscillator model, the operator K in this 
term is proportional to the single-particle quadrupole moment. Since the 
quadrupole transitions inside one shell are forbidden, the value Br in this 
case is very small, because the energy denominator is large. Let us introduce 
the deformation ß' of the closed-shell core connected with Qcl by the equation 
(105). Then the inertial parameter Bß, related to ß' in the absence of pairing 
interaction coincides with that for the oscillations of an irrotational liquid 
drop19)

(145) O jt

(in is the nucleon mass, Bo and A are the radius and the atomic number 
of the nucleus). One might expect that this result is not sensitive to the 

(146)

model. The pairing interaction does not significantly change the value of Bß>. 
The inertial coefficient Bt¡ related to is given only by the term B2 in 

(135)
" ( 1 dUv\2 1

The parameter Bt/ is absent for non-interacting particles and, therefore, is 
of special interest.
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Using (26) and (28) we obtain

1 dUv 1 dtf 1 \ d _ ÔA
Vvdr¡ 2UvVvdr¡ 2 Ef[ d^v ? (147)

In the case of vibrations of spherical nuclei, we are interested in the value 
Br¡ for ?? = 0. The expansion of d for small t], as can be seen from (110), docs 

not contain a linear term and therefore vanishes for t; = 0. The quan
tity ev- Å for small rj is given by

s,-/JfiGz'McV-’r,.
¿ £ £ (148)

The average energy of the 2-shell, in the first approximation, is not shifted 
by the deformation. The ratio (ev - fy)/(e" - e) remains constant for small 
rj and, therefore,

d n Ev- Sí-(e,-Ä)-ßG^^. (149)
OT] E -E

With the aid of (149) and (147) we get from (146)

/I2

Inserting in (150) the values of d and Ev, which for r¡ « 1 are given by

we get

d~|i2G(9^2; EV^QG, 

2h*0N
QG ^L\£"-e7‘

V

Replacing the sum in (151) by an integral, we obtain

B
6G

(151)

(152)

The equation (152) contains the value of the interaction G in the denomi
nator. It must be pointed out that the transition in (152) to the limit G -> 0 
is not valid, since the condition (e" - e')/í2G < 1 has been used in its 
calculation. As can be seen from the exact formula (146), Bt]-+Q for
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G-*0.  When G decreases, then the number of outside particles, needed to
make the spherical shape unstable, also descreases. For a certain value of 
G, the spherical shape becomes unstable even for one outside pair (N = 2), 
which makes the inertial parameter (152) meaningless. The minimum value

if one requiresof G in the equation (152) can. be estimated from (113)
that ON<¡ > &2, which leads to

. Í2
2

C >3
‘-3

1 — x/k £ ’ (153)

To analyze the quantity we compare it with the mass coefficient Biir 
(145). To this purpose, we need a relation between tj and the equivalent de
formation of the nucleus in the hydrodynamical model. Assuming the 
equilibrium ratio between ß and t] we get from (108) and (110)*

6Q(1 -x/Å-)
(154)

From (145), (152), and (154) it follows that

16 ^0 ~ *M0 2 ft2 ( Q \2 A 
\ßl Birr t-i! zn7?ø\g0A/

3
(155)

Using (105), and setting qo/Bo = 2; £ = 1 according to the oscillator model, 
one obtains from (155)

ßl Blrr
41/3

100 MeV(l-x/¿)2—. (156)

The ratio (156) is significantly larger than unity and is in qualitative agree
ment with the observed trends. Thus, for the single particle, excitation energy 
BG*  1.5 MeV and x/k = 0.5, A1/3 = 5; N = 6 the ratio is equal to 10 and 
decreases when the number of outside particles increases.

6. Normal Vibrations of Spherical Nuclei

The potential energy of collective vibrations is given by (104). Introduc
ing the variables t] and ß' (the deformation of the core, associated with 
Qcl by: Qci = Qß'), we obtain for small

* In the general case, the equilibrium polarizability of the core x/k may be replaced by 
a.x/k, where 0 < a < 1.
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As has been established in the previous section, the kinetic energy has the
form

(158)

where is given by (152). Because of the smallness of the coefficient Bß,, 
the second term in (158) is much smaller than the first one. Making use 
of this fact in the transformations of (157) and (158) to the normal vibrations, 
we obtain for the normal coordinates*

xqQQ0N
Y¡ H----------------‘ &(k-x)Q

<x2 ~ HqQQON
S(k-x)Q

The corresponding eigenfrequencies are given by

(159)

(160)

(161)

where is determined by (112) or (114).
The normal vibration of the first type (a2 = 0) preserves the equilibrium 

relation between ß' and r¡. Indeed, using (98) and (110) and employing 
the relation between ß' and Qcl, one may write the condition a2 = 0 as

°r Qz = (i-«WQ. (162)

which is equivalent to the equilibrium relation (108'). Therefore, in the vibra
tion of the first type, the closed-shell core adjusts itself adiabatically to the 
deformation of the outside nucleons. According to (161), (H4), and (152), 
the energy of this vibration is given by

(163)

* In terms of these coordinates the Hamiltonian of collective vibrations is given by 

hcM = t+w (q) = + àj + co* «•).
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and decreases as the occupation of the shell increases. Only when 0N 
approaches the value 0Na, needed to give instability of the spherical shape, 
does the vibrational energy become appreciably smaller than the intrinsic 
excitation energy QG, as required by the adiabatic condition*.  In the absence 
of pairing interaction this type of vibration vanishes.

* Here, we are referring to even-even nuclei. In odd nuclei, this adiabatic condition is 
not fulfilled because of the small excitation energy of the odd particle.

The collective motion considered above corresponds to vibrations of the 
average value of the quadrupole moment. Such a simple physical picture 
is meaningful only when fluctuations of the quadrupole moment do not 
exceed the vibrational amplitude. According to (91), the quadratic fluctu
ation of the qudrupole moment is given by

(»Q)‘ - <Q2>~<0>2-Zl«w-I2(^v,.+Ki4,.)2. (164)VF*
For simplicity, we shall consider only the outside nucleons. In a proper 
representation, when the states v are eigenstates in the self-consistent field, 
the matrix element qvv- is diagonal (cf. (94)) so that we have

(«Q)2-Zl<7„l24^V2.
V

For spherical nuclei (77 = 0), one finds 4 V2 = 0N and, after simple cal
culations, we obtain

( « &)2 = 0nS\ 'lr, I2 - 0N (1 - f ) • (165)

On the other hand, using the relation (98) between and 7/ and substitu
ting for 77 the amplitude of zero vibrations,

(166)

we find for the zero-vibration amplitude of the quadrupole moment

Í2 G 
htoi

(167)

Comparing (165) and (167), we obtain

I Z1 Qn
QV (/ 0No' (168)
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As it is seen from (168), the requirement that this ratio be small coincides 
with the adiabatic condition.

Consider, now, the second normal vibration (fq = 0). The closed-shell 
core participates mainly in this vibration. The outside nucleons are only 
slightly deformed. The ratio of the amplitudes r] and ß', in this type of vibra
tions compared to that in the first type, is given by

Bi

ß/2

V\
ß'h 1 \^/iJ

(169)

Since Bß-, is of the order of BiTr it is seen from (169) that the polarization 
lß\2of the outside nucleons is reduced by the factor I- I Birr/B given by (156).

The second type of vibration occurs with a high frequency which is 
determined by the properties of the core and does not depend appreciably 
on the pairing interaction and on the number of the nucleons in the un
filled shell. Since there is almost no coupling between this vibration and 
the outside nucleons, the adiabatic condition requires the vibrational energy 
/uq to be small only compared with the distance between the shells.*

* In the oscillator model, ho)2 turns out to be two times larger than the distance between 
the shells; this violates the adiabatic condition181.

Mat.Fys.Medd.Dan.Vid.Selsk. 31, no. 11.

Concluding Remarks

Starting from the basic assumption that a pairing correlation of a “super
conducting” type exists between nucleons, we have attempted to investigate 
consistently the effects of this correlation in different nuclear phenomena.

Although the calculations are based on a rather idealized model, a great 
number of experimental facts of a different kind are explained in a natural 
way from a single point of view, viz.,

a) Stability of the spherical shape of nuclei near the closed shells;
b) Sharp transition between spherical and deformed nuclei;
c) Significant reduction of the moment of inertia from the value for rigid 

rotation ;
d) Existence of low-energy vibrations in spherical nuclei near the bound of 

instability.

4
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The equilibrium deformations, the moment of inertia, the vibrational 
frequencies, and the inertial parameter obtained from the present model are 
of the order of magnitude observed, and exhibit a reasonable dependence 
on the parameters. Besides these collective effects, some particular features 
of the single-particle spectra are explained (energy gap in even-even nuclei, 
increased level density just above the gap).

It is outside the scope of this paper to relate the pairing correlation to 
explicit forms of nucleon-nucleon forces. Here, we are restricting our
selves to a semi-phenomenological description of this correlation*.  The 
matrix element ( vv [ G [ v'v') which represents the pairing interaction has 
been assumed, for simplicity, to be constant and its value G is the only 
additional parameter introduced in order to describe the pairing correlation. 
A dependence < vv | G | v'v'> on v and v' might be essential for a more de
tailed description. For example, the constancy of < vv | G | v' v1 > (and, 
therefore, Av) leads in spherical nuclei to the same energy for all quasi
particles Ev = + (E^  2)2 = 1 „QG and, therefore, to a degeneracy of the

* Only a few qualitative remarks have been made in I. 4 in order to indicate which parts of 
the nucleon-nucleon forces are responsible for the pairing interaction.

excited states. A dependence of Av on v eliminates this degeneracy. The 
residual interaction between quasi-particles causes the same effect and may 
also be important for a detailed analysis of single-particle spectra.

To simplify the problem, we did not distinguish between protons and 
neutrons. If we do not consider any pairing interaction between neutrons 
and protons, or if they occupy different shells, then the generalization of 
the problem is straightforward. The case with some neutron-proton pai
ring correlation included remains to be investigated.

For spherical nuclei, we have considered the idealized scheme of strongly 
degenerate levels removed from each other (shells). The validity of the 
present results for shells with a small number of states, as well as the effect 
of the splitting of a shell into subshells, will need further analysis.

Finally, it may be added that the pairing correlation may affect also 
other nuclear phenomena such as quadrupole and magnetic moments, 
electromagnetic transitions, etc.
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Appendix A

Here, we write down the expression for + ^22 • For
compactness, we rewrite (10) in the following way:

where
a,‘r(7 + Vvo yva,

•u + yv- av ’
UV ± = uv »

In this notation, Hint is given by

(A- 1)

(A. 2)

H40= !'> ¿/l62 V2' Vl' ælæ2 I/2'{/r+ COnJ-

w31 = -12? < 12 I G I 2' 1 ' > (U, U2 v2, - V, V2 U2, Vr) xtø

+ COI

W22 - - J Z < 12 I G I 2'1 ' > <T1 V2 U2- uv + U V2 V2- Vr) ríx+x2.rr

+ 2’<12|G|2'r>U1V2V2.i/1.

where the indices correspond to v and cr (e.g., 1 = and the matrix 
elements are antisymmetrized

<^12\G\2'1') = ^v1a1v2a2\G\v2a2v'iai)-^v1a1v2a2\G\v1olv2o2y. (A. 4)
4*
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The matrix elements have the symmetry properties following from the defi
nition of the conjugate states:

< cq v2 cr2 | G | v2 4 vi ffi > = < - ffj v2 - cr2 I G I v2 - ff2 iq - a¡ >*  (A. 5)

from which it follows, in particular, that

< Vi + v2 - I I - n + > = < v2 + - I G I - r2 + > • (A- 6)

Appendix B

Here, we shall calculate the nuclear energy (104) for small deformations 
of the self-consistent field. The main point will be to show that the efTect 
of a variation of the single-particle wave functions with deformation may be 
neglected for the outside nucleons. The following calculations will explicitly 
exhibit also the procedure of the extraction of an additional self-consistent 
field and the choice of the new single-particle eigenstates v, which demon
strate the nature of the first canonical transformation (3).

Let us look for the ground state of the Hamiltonian (101). The single
particle eigenstates v in a deformed field are determined by the requirement 
of diagonalization of the single-particle energies ëVV’, i.e., according to 
(94), by

ftlQvv' ^k^Pkv^kv' ft JL (lkk' (f,kv(Pk'v' ^v^vv' 
k kk'

which can also be rewritten as

(£° - E„) (pkv = ¡1^ <lkk'(Pk'V’
k'

(B. 1)

where the states k and the quantities e® and qGkk- correspond to the spherical 
field. We assume that the states k, corresponding to the same degenerate 
level, are chosen to make the matrix elements qQkk> diagonal inside each 
shell. Assuming that (pkv = bkv + (pk} where the deviations from the spherical 
symmetry <p$ are small, we find in the first approximation

and, therefore,

(B.3)
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Vvv = + 2 A 2? o^'-o = (1vp + 2 PPvV' £y ' &y

Epp Epp flippy Ep ¡1 (]py py •

(B. 4)

(B. 5)

(For the closed shells, ¡i, = p + xQ must be replaced by ¡H' = // + xQ). From 
(B. 5) it follows that the total splitting of the unfilled shell is given by (cf. 
(99))

e" - e'=/U/o+/î2p0, (B. 6)
where

0/ '\ 0 / f f' \Po = Pv = £ ) - Pr (£p = £ )• (B. 7)

Using (B. 4), one obtains for the quadrupole moments

Qc,-2/2'¿'2p»E2/l'P', (¿"¿-01
V \ V I

Qi - ZÅ 2 + 2 Pv 2 V2v ■
V V

(B-8)

(B. 9)

The quantity V2 depends on the total splitting of the Â-shell, i.e., on the 
parameter tj. Therefore, we may write

Z^ïv^Vv-'l^^) (B. 10)
V

Pv‘¿Vv = PoA'(r¡). (B. 11)
V

The function A (/?) has been calculated earlier and is given by (100). The 
function A' (rfr is of the same order as A (r¡).

The energy of non-interacting particles (the first term in (96)), is, 
according to (B. 3), given by

2?ew2^2 =2?e“2 Vv+A'22^,2p” + z722^APv2 V2. (B. 12)
V V V V

Note that the first term in the right hand side is constant, since 

^2v^'2£;+^s %.
V V

Using (B. 8) and (B. 11), we obtain

J’s,, 2 V2 - + —¡7 (& p0 A'(rt). (B. 13)



54 Nr. 11

To estimate the expressions obtained above, we asume now that the 
states k correspond to the oscillator potential. In this model, the quantities 
q0 and p0 are given, in the usual notation, by

3 fm
/?0 = 2/nW (B.14)

(n is the principal quantum number). From (B. 14) and (B. 6) it follows 
that

PPo ~ Po P<lo £"-£
---- = P (lo~2 = .TT---- ~ ----<]0 Qq 6 n a) n 6 ef

(B. 15)

where ef is the Fermi energy. Within the accuracy of the small factor (B. 15), 
we may neglect the last terms in (B. 6) and (B. 9); then, these equations 
coincide with (99) and (98). The last term in (B. 13), which depends on

1 2r/, is to be compared with other //-dependent terms in (96), say,
Then, we find

AaX = ppo . PA' (B 16)
*01 7o *Ql A'

Since A' ~ A and ~ xQ;, the ratio (B. 16) is of the order of the small 
factor (B. 15). Therefore, the last term in (B. 13) may be neglected, and this 
justifies the equation (103).
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